

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 31.03.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let ψ be a unit vector in $L^2(\mathbb{R})$ such that $x\psi, x^2\psi \in L^2(\mathbb{R})$. Prove that

$$\langle X^2 \rangle_\psi \geq (\langle X \rangle_\psi)^2, \quad (1)$$

where as we defined in class, X is the operator given by the multiplication by x and

$$\langle A \rangle_\psi := \langle \psi, A\psi \rangle. \quad (2)$$

Hint: Use Jensen inequality.

Exercise 2

Let $\alpha := \{\alpha_n\}_{n \in \mathbb{Z}}$ be a sequence of complex numbers. Consider the Hilbert space of the square integrable functions $\mathfrak{h} := l^2(\mathbb{Z})$. Consider the operator that to the sequence $x := \{x_n\}_{n \in \mathbb{Z}}$ associate the sequence $M_\alpha x = \{\alpha_n x_n\}_{n \in \mathbb{Z}}$.

Suppose that $\|\alpha\|_\infty := \sup_{n \in \mathbb{Z}} |\alpha_n| < +\infty$. Prove that M_α is a well defined linear bounded operator from \mathfrak{h} to itself and prove that $\|M_\alpha\| = \|\alpha\|_\infty$.

Exercise 3

Consider the Hilbert space $\mathfrak{h} := L^2(\mathbb{R})$. And the operator H define

$$\begin{aligned} \mathcal{D}(H) &:= H^2(\mathbb{R}) = \left\{ \psi \in L^2(\mathbb{R}) \mid k^2 \hat{\psi} \in L^2(\mathbb{R}) \right\} \\ H &= -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(X), \end{aligned}$$

where the operator $(V(X)\psi)(x) = V(x)\psi(x)$, with

$$V(x) := \begin{cases} -C & \text{if } |x| \leq A, \\ 0 & \text{if } |x| > A, \end{cases} \quad (3)$$

and with A and C positive constants. Consider $E \in (-\infty, -C]$ and prove that there is no nonzero $\psi_E \in \mathcal{D}(H)$ such that

$$H\psi_E = E\psi_E. \quad (4)$$

Exercise 4

Let \mathfrak{h} , H and $\mathcal{D}(H)$ as in Exercise 3. In class we saw that for any $E \in (-C, 0)$ there is always at least one nonzero even solution ψ_E to the problem $H\psi_E = E\psi_E$.

Prove that if $A\sqrt{2mC}\hbar \leq \frac{\pi}{2}$ there are no nonzero odd solutions, and for larger values of C there is always at least one.